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Originally, kinetic schemes have been used as numerical methods to solve the sys-
tem of compressible Euler equations in gas dynamics. The main idea in the approach
is to construct the numerical flux function based on a microscopical description of
the gas. In this article the schemes are investigated in the case of isentropic Euler
equations and low Mach numbers. Expanding the microscopical velocity distribution
naturally leads to new kinetic schemes with strong resemblance to lattice Boltzmann
methods. By adjusting the parameters of the kinetic scheme the numerical viscosity
can be used to reproduce a given physical viscosity. In this way, a finite difference
solver for the incompressible Navier–Stokes equation is obtained. Its close relation
to the lattice Boltzmann approach is highlighted.c© 1999 Academic Press

Key Words:kinetic schemes; lattice Boltzmann method; low Mach number; isen-
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1. INTRODUCTION

Generally speaking, kinetic schemes are numerical methods to solve systems of hyper-
bolic conservation laws. To explain the basic idea, we consider the paradigmatic case of
gas dynamics. The classical derivation of the governing evolution equations relies on a
continuum model of a gas in a state of local thermodynamical equilibrium. The Euler equa-
tions for densities of massρ, momentumρu, and energyE are then obtained by applying
conservation principles [3].

A second and more general description is obtained with gas–kinetic theory. In this ap-
proach, the state variable is a particle distribution functionf (x, v, t) which specifies the
density of microscopic gas particles with velocityv at timet and positionx. The evolution
of f is given by the Boltzmann equation [4]. Physically, the basic quantitiesρ, ρu, E of the
macroscopic approach can be recovered fromf by taking velocity averages of the corre-
sponding microscopic mass, momentum, and energy densitiesf, v f, 1

2|v|2 f . A mathemat-
ical connection between the two descriptions is obtained in the so-called hydrodynamical
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limit where particle collisions become dominant. In this asymptotic case, solving the
Boltzmann equation is equivalent to solving Euler equations. This is possible because
the particle distribution functionf attains a very special functional form: as a function of
v it is a Maxwellian distribution

M(v) = ρ

(2π)
d
2 cd

exp

(
−|v − u|2

2c2

)
,

(1)

c2 = p

ρ
, p = 2

3

(
E − 1

2
ρ|u|2

)
, v ∈ Rd.

and the(x, t)-dependence enters only through the parametersρ, u, E which are solutions
of the Euler system. (We assume ad dimensional velocity space.) In kinetic schemes, the
relation between the two models is used to obtain a scheme for the Euler system. Given a
macroscopic stateρ, u, E depending on space and time, the idea is to set up a continuum of
microscopic particles whose velocity distribution is given by the equilibrium distribution
(1). The Boltzmann evolution is then approximated by a splitting approach which separates
transport from collisions. First, the particles move freely in space according to their pre-
scribed velocities. In this process, the macroscopic parametersρ, u, andE also evolve in
time. However, the velocity distribution deviates more and more from the equilibrium form
so that equivalence between Boltzmann and Euler description is no longer given. There-
fore, transport is stopped after a small time step and collisions are assumed to take place.
In general, this collision process is a complicated procedure but in the limit of dominating
collisions this step is just a projection of the distribution function into equilibrium form.
Since the parametersρ, u, E are invariant under collisions, they keep their values which
resulted from the transport step. With the distribution function back in equilibrium form,
the whole process is then iterated to obtain an approximation at larger times.

A very similar approach is given by lattice Boltzmann methods which also employ
the evolution of microscopic gas models to approximate macroscopic equations of fluid
dynamics. Compared to kinetic schemes which have been designed for the hydrodynamical
limit, lattice Boltzmann methods rather work in a diffusion limit so that they approximate
incompressible Navier–Stokes equations. While the lattice Boltzmann approach is based
on simple, discrete gas models, kinetic schemes can be formulated with a wide variety of
equilibrium distributions and space discretizations. As we will see below, kinetic schemes
based on discrete equilibrium distributions applied in low Mach number flows can be viewed
as building blocks of the lattice Boltzmann method.

In 1974, the first kinetic scheme was presented by Sanders and Prendergast [29]. The
chosen distribution function was not a Maxwellian but a weighted sum of Dirac deltas.
A modification and extension of this discrete equilibrium distribution function will be the
basis for kinetic schemes in lattice Boltzmann form presented below. A few years later,
an approach to construct kinetic schemes for general hyperbolic systems of conservation
laws was described in a review paper by Hartenet al. [12] where the schemes were called
Boltzmann-type schemes. In the 1980s, kinetic schemes based on the Maxwellian distribu-
tion were analyzed by several authors [24, 28, 7, 6]. Kaniel investigated a kinetic scheme
for the isentropic Euler equations [15, 18, 27] based on yet another distribution function.
A general approach to construct kinetic schemes for the Euler system was introduced by
Perthame in [21]. In [17], kinetic schemes for moment systems proposed by Levermore
and Anile were constructed. Also, a new approach was presented which allowed the
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construction of consistent kinetic schemes for general systems of conservation laws. It
was a generalization of the scalar case which was analyzed in [2, 11, 22].

In the following we will focus on the case of isentropic Euler equations

∂tρ + div(ρu) = 0,
(2)

∂t (ρu)+ div(ρu⊗ u)+∇ p(ρ) = 0,

which is a hyperbolic system if the sound speed

cs(ρ) =
√

p′(ρ)

is real. In order to set up a kinetic scheme for (2), a natural particle distribution function is
the Maxwellian (1) where now the given pressure lawp(ρ) is used

M(ρ, u; v) = ρ

(2π)
d
2 cd

exp

(
−|v − u|2

2c2

)
.

In the case of perfect gases for which

p(ρ) = Aργ , γ ≥ 1,

the velocity parameterc(ρ)=√p(ρ)/ρ and the sound speedcs are related by

cs = √γ c.

In particular, forγ = 1 the velocities coincide and are independent ofρ. The corresponding
pressure lawp(ρ)= c2

sρ is calledisothermalin view of the state equationp= Rθρ which
connects density and pressure with the absolute temperatureθ (R> 0 is the gas constant).
We will mainly consider the isothermal case because it is the simplest choice and in the low
Mach number limit the actual form of the pressure law is irrelevant.

In Section 2, kinetic schemes are introduced based on a general class of distribution
functions which contains the Maxwellian as a special case. Then, an expansion of the
distribution functions gives rise to new schemes which are shown to be consistent to (2).
Analyzing the modified equations for these schemes in a low Mach number limit eventually
shows that the kinetic schemes yield approximate solutions to the incompressible Navier–
Stokes equation. In Section 5 a particular scheme is analyzed and finally relations to lattice
Boltzmann methods are highlighted.

2. THE KINETIC SCHEME

To motivate the definition of kinetic schemes we use a formal argument which can be
made precise for scalar conservation laws [19]. Let us assume thatF(x, v, t) is the solution
of a Boltzmann-like equation

∂t F + vi ∂xi F = Q, (3)

whereQ satisfies

〈Q, 1〉v = 0, 〈Q, v〉v = 0
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(we use Einstein’s summation convention and〈·, ·〉v denotes integration with respect to
v). Moreover, Q is supposed to constrainF to the specialv-dependenceF(x, v, t)=
M(ρ(x, t), u(x, t); v) whereM is the Maxwellian. We note that

〈M(ρ, u; v), 1〉v = ρ,
〈M(ρ, u; v), vi 〉v = ρui , (4)

〈M(ρ, u; v), vi v j 〉v = ρui u j + p(ρ)δi j .

Multiplying (3) with ( 1
v
) and integrating overv we obtain withU (x, t)= (ρ(x, t), u(x, t))

∂t

〈
M(U (x, t); v),

(
1
v

)〉
v

+ ∂xi

〈
M(U (x, t); v), vi

(
1
v

)〉
v

= 0,

which is exactly the isentropic Euler system due to (4). This relation between the kinetic and
macroscopic equation can be used to set up a numerical scheme. In order to approximate
the evolution (3) we enforce the constraint given throughQ not continuously but only at
discrete points in time. More precisely, ifU0(x) is the given initial value, we consider the
solution of the resulting free transport equation

∂t F + vi ∂xi F = 0, F(x, v,0) =M(U0(x); v)

which is just

F(x, v, t) =M(U0(x − vt); v).

Sincev appears in the argument ofU0, the distribution function increasingly deviates from a
Maxwellian for growingt (which is the consequence of neglectingQ). Hence, the moment
vector (

ρ(x, t)
ρu(x, t)

)
=
〈
M(U0(x − vt); v),

(
1
v

)〉
v

(5)

satisfies (2) only up to some error term which also grows in time. To control the error, the
free flow is stopped after some small time step1t and the constraint

M(U0(x − v1t); v)→M(U (x,1t); v)

is enforced withU (x,1t)= (ρ(x,1t), u(x,1t)) defined in (5). Iterating this process, we
get the scheme(

ρn+1(x)

ρn+1un+1(x)

)
=
〈
M(Un(x − v1t); v),

(
1
v

)〉
v

, n ∈ N0.

Of course, a discretization in space is also necessary to obtain a numerical code.
As an important observation we note that the only structural features ofMwe have used

are the moment conditions. In particular, we can replaceM(ρ, u; v) by any other function



KINETIC SCHEMES AT LOW MACH NUMBER 951

f (ρ, u; v) which satisfies

〈 f (ρ, u; v), 1〉v = ρ,
〈 f (ρ, u; v), vi 〉v = ρui , (6)

〈 f (ρ, u; v), vi v j 〉v = ρui u j + p(ρ)δi j .

The corresponding kinetic scheme then reads(
ρn+1(x)

ρn+1un+1(x)

)
=
〈

f (Un(x − v1t); v),
(

1
v

)〉
v

, Un = (ρn, un). (7)

For a quite general class of distribution functionsf the(ρ, u) dependence is of the form

f (ρ, u; v) = ρ

cd
f ∗
(
v − u

c

)
,

where f ∗ is a non-negative, symmetric measure which is normalized in the sense

〈 f ∗(v), 1〉v = 1,
(8)

〈 f ∗(v), vi v j 〉v = δi j .

An isotropy condition on the fourth order moments

〈 f ∗(v), vi v j vkvl 〉v = λ(δi j δkl + δikδ j l + δi l δk j ) (9)

is not required for classical kinetic schemes but it will be important in the low Mach number
case considered below.

We note that with

f ∗(v) = 1

(2π)
d
2

exp

(
−1

2
|v|2
)

(10)

the Maxwellian belongs to the above class of distribution functions, satisfyingλ= 1.
Another example is based on the suitably normalized characteristic function of thed-
dimensional ball

f ∗(v) = 0(d/2)d

2(
√
(d + 2)π)d

X[0,
√

d+2](|v|). (11)

The approach based on this distribution function has been analyzed at length in [15, 18].
The fourth order tensor in (9) is characterized byλ= d+2

d+4.
Finally, we are especially interested in discrete distribution functions like

f ∗(v) =
(

1− 2

σ 2

)
δ(v)+ 1

nσ 2

2n∑
l=1

δ(v − σel ) (12)

for the two dimensional case, whereσ >
√

2, n≥ 2, and theel are unit vectors of the form

el =
(

cos
(
l πn
)

sin
(
l πn
) ), l = 1, . . . ,2n.
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For the full Euler system, the casen= 2 has been mentioned in [29]. For our purpose,
however, the casen= 3 will be most important because it leads to a simple kinetic scheme
which operates on a hexagonal grid similar to lattice Boltzmann methods in 2D [5]. We
note that forn= 2 the fourth order tensor is not of the form (9) since〈 f ∗(v), v2

1v
2
2〉v = 0 but

〈 f ∗(v), v4
1〉v 6= 0 (which excludes this particular case from the low Mach number expansion

below). For all largern we obtain (9) withλ= σ 2/4. Another choice which is related to
widely used lattice Boltzmann schemes [1, 14] is given by the nine velocity distribution

f ∗(v) = η f ∗1 (v)+ (1− η) f ∗2 (v), η ∈ (0, 1). (13)

While f ∗1 is of the form (12) withn= 2 (velocities pointing in coordinate directions),f ∗2
has the structure

f ∗2 (v) =
(

1− 1

σ 2

)
δ(v)+ 1

4σ 2

4∑
l=1

δ(v −
√

2σe′l ),

with discrete velocities in diagonal directions

e′l =
(

cos
((

l − 1
2

)
π
2

)
sin
((

l − 1
2

)
π
2

) ).
The convex combination yields a symmetricf ∗ which satisfies the normalization conditions
(8). If η= 2

3 we even get isotropy (9) withλ= σ 2/3.

3. VELOCITY DISTRIBUTION AT LOW MACH NUMBERS

In situations where the speed|u| of the flow is much smaller than the velocity parameter
c=√p/ρ, the distribution function

f (ρ, u; v) = ρ

cd
f ∗
(
v

c
− u

c

)
(14)

is only a small perturbation of

f (ρ, 0; v) = ρ

cd
f ∗
(
v

c

)
.

For perfect gases, the parameterM = |u|/c is proportional to the Mach number

Ma= |u|
cs
= |u|√

γ c
= 1√

γ
M.

For more general pressure laws where onlyp(0)= 0 and convexity ofp is assumed, we
still have the relationshipMa≤M . The caseM¿ 1 therefore corresponds to small Mach
number flows. The derivations in this section are done for the isothermal case (γ = 1) where
c= cs andMa=M . We briefly comment on more general laws at the end of the section.

To motivate the following low Mach number expansion off (ρ, u; v) let us consider the
case (12). Withσ = 2, n= 3, f (ρ, u; v) is of the form

f (ρ, u; v) = ρ

2
δ(v − u)+ ρ

12

6∑
l=1

δ(v − (2csel + u)).
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FIG. 1. |u|/cs¿ 1 (left) and|u|/cs∼ 1 (right).

To investigate the kinetic scheme based on this velocity distribution we consider how
information is transported during the free flow step. After a time1t the state at positionx
influences the points

x0 = x +1tu, and xl = x +1t (2csel + u), l = 1, . . . ,6

or using the abbreviations1x= 2cs1t ande0= 0

xl = x +1xel +1x
u

2cs
, l = 1, . . . ,6.

In the caseMa= |u|/cs¿ 1, information is essentially transported to the neighboring points
x+1xel on a hexagonal grid (see Fig. 1) whereas forMa=O(1) an immediate correlation
between the pointsxl and the grid is no longer visible. In other words, if|u|/cs ranges in
the unit circle, information is transported to any point of the right shaded area in Fig. 2. The
underlying hexagonal structure is still visible but it becomes less and less important if we
allow for larger values ofu/cs. Conversely, ifu/cs→ 0, it seems to be worthwhile to use
the emerging hexagonal structure in space.

The idea is to base the scheme onf (ρ, 0; v) so that information travels exactly to
neighboring points on the grid. The neglected small deviation due to|u|/cs¿ 1 is taken
into account by a polynomial perturbation. All together,f will be replaced byh(ρ, u; v)=
ω(u; v) f (ρ, 0; v) with a suitablev-polynomialω. In contrast to the original functionf ,
the perturbation is non-negative only for a restricted velocity range. Also, theu dependence

FIG. 2. Range of influence for varyingu.
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of the perturbation no longer reflects translational invariance like the one off . These
disadvantages, which are of minor importance for moderate flow situations at low Mach
numbers, are the price to pay for the simplification of the scheme.

In the isothermal case, we have the following result.
If f ∗ is a non-negative symmetric measure onRd which satisfies(8) and(9) then a low

Mach number approximation of f(ρ, u; v)= ρ f ∗((v − u)/cs)/cd
s is given by

h(ρ, u; v) = ω(u; v) f (ρ, 0; v) (15)

with a polynomial

ω(u; v) = 1+ u · v
c2

s

+ 1

2

(
1

λ

(u · v)2
c4

s

− β
(
λ− 1

λ

|v|2
c2

s

+ 2

)
|u|2
c2

s

)
(16)

andβ = 1/((d+ 2)λ− d). The new distribution function h satisfies the moment conditions
(6). If λ≤ 1, h is non-negative provided

Ma2 = |u|
2

c2
s

≤ 1

2β
. (17)

For λ>1,non-negativity of h can only be obtained if f∗ has a bounded velocity support in
|v| ≤ vmax. Under this restriction we find h≥ 0 if

Ma2 ≤ 1

2

(
λ− 1

2λ
v2

max(1+ β)+ β
)−1

. (18)

For the Maxwellian (10) we have already mentioned thatλ= 1 so thatβ = 1/2. Con-
sequently, the low Mach number approximation of the Maxwellian violates the physical
positivity restriction on particle distribution functions forMa≥ 1. Practically, one observes
instabilities of the kinetic scheme ifh≥ 0 is violated so that the positivity considerations
indicate the stability range of the scheme. The construction ofh is based on two require-
ments. First,h should satisfy the moment conditions (6) so that it is applicable in kinetic
schemes. Second, integrals overh should be easy to evaluate so that the scheme can be
efficiently implemented.

Since the right hand sides of (6) involve at most quadratic expressions inu, an expansion in
u/cs up to second order aroundu= 0 leaves the right hand sides unchanged. Consequently,
the expansion off (ρ, u; v) to the same order

g(ρ, u; v) = ρ

cd
s

(
1− u j

cs
∂w j +

1

2

ui u j

c2
s

∂wi ∂w j

)
f ∗(w)

∣∣∣∣
w= v

cs

(19)

still satisfies (6). A disadvantage of (19) is that derivatives off ∗ are involved. In particular,
if f ∗ is not very regular, the expansiong has to be interpreted as a generalized function.
(For discrete measures like (12) or (13),g contains derivatives of Dirac delta distributions.)
In order to simplify the structure ofg, we use the observation that∂w j f ∗(w) acts exactly
like −w j f ∗(w), at least on second order polynomials (which are the most important test
functions used in the derivation of the kinetic scheme). Indeed, if

P(w) = a+ aiwi + aikwiwk, w ∈ Rd
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is any quadratic polynomial we find with (8) and the symmetry off ∗〈
∂w j f ∗(w), P(w)

〉
w
= −〈 f ∗(w), ∂w j P(w)

〉
w
= −〈 f ∗(w),aj + (ai j + aji )wi 〉w = −aj .

On the other hand,

〈w j f ∗(w), P(w)〉w = 〈 f ∗(w),aw j+aiwiw j+aikwiw jwk〉w = 〈 f ∗(w),aiwiw j 〉w = aj .

Hence, for all quadratic polynomialsP〈
∂w j f ∗, P

〉
w
= 〈−w j f ∗, P〉w.

Similarly, we obtain withβ = 1/((d+ 2)λ− d)

〈
∂w j ∂wi f ∗, P

〉
w
=
〈(

1

λ
wiw j − β

(
λ− 1

λ
|w|2+ 2

)
δi j

)
f ∗, P

〉
w

.

Using these representations in (19), we recover the distributionh(ρ, u; v)=ω(u; v) f (ρ,
0; v) with ω of the form (16). The distributionh satisfies the moment conditions (6) since
the same holds forg and only quadratic polynomials are involved.

To check positivity ofh, we start with the observation that

0< 〈 f ∗(v), |v|4〉 = 3dλ+ d(d − 1)λ = d(d + 2)λ.

To show positivity ofβ we need the Schwarz inequality for the scalar product(P, Q)→
〈 f ∗(v), P(v)Q(v)〉v

d = 〈 f ∗(v), |v|2〉 < (〈 f ∗(v), 1〉〈 f ∗(v), |v|4〉) 1
2 =

√
d(d + 2)λ.

Taking squares and dividing byd

1

β
= (d + 2)λ− d > 0.

After regrouping (16) we obtain

ω(u; v) = 1

2
− β |u|

2

c2
s

+ 1

2

(
u · v
c2

s

+ 1

)2

+ 1− λ
2λ

(
(u · v)2

c4
s

+ β |u|
2|v|2
c4

s

)
.

In the case 1− λ≥ 0 we see thatω(u; v)≥ω(u; 0). Requiringω(u; 0)≥ 0 then leads to the
condition

Ma2 = |u|
2

c2
s

≤ 1

2β
.

Forλ>1 the situation is more complicated. Inserting a velocity vector which is perpendic-
ular tou 6= 0, we get

ω(u; v) = 1− β |u|
2

c2
s

(
1+ λ− 1

2λ

|v|2
c2

s

)
, v ⊥ u
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which certainly becomes negative for very large|v|. However, the polynomialω is only
used in conjunction with the distribution functionf (ρ, 0; v). If f ∗ has bounded sup-
port, say on|v| ≤ vmax, then f (ρ, 0; v)= (ρ/cd

s ) f ∗(v/cs) is supported oncsvmax. Since
(u · v)2≤ |u|2|v|2 we then get

(u · v)2
c4

+ β |u|
2|v|2
c4

≤ |u|
2v2

max

c2
(1+ β),

so thatω(u; v)≥ 0 provided|v| ≤ csvmax and

Ma2 ≤ 1

2

(
v2

max(λ− 1)

2λ
(1+ β)+ β

)−1

.

We conclude the section by giving a few remarks. For more general pressure laws than
p(ρ)= c2

sρ (isothermal case) a similar derivation can be carried out. If the changes in
c(ρ)=√p(ρ)/ρ are small with respect to a reference valuec̄ we expand inu/c̄ around
zero and inc aroundc̄. Sincec enters quadratically in the moment conditions (6) (via
p= c2ρ), a second order expansion is sufficient. We again obtain a polynomial perturbation
of the form

ω̄(ρ, u; v) ρ
c̄d f ∗

(
v

c̄

)
,

whereω̄ has the same form as (16) withc replaced bȳc plus the additional term

β

(
d − |v|

2

c̄2

)(
1− c(ρ)2

c̄2

)
.

If the full Euler system is considered, the additional energy variable gives rise to another
moment condition which involves a third order polynomial. However, it is no problem to
generalize the approach presented here also to that case.

4. KINETIC SCHEMES AT LOW MACH NUMBERS

To study the approximation properties of the kinetic scheme, we perform amodified
equation analysis[13]. The basic idea of this approach is the following: the discrete evolution
given by some approximation procedure typically deviates from the actual evolution which
is to be calculated. Hence, the equation satisfied by the approximation can be thought of as
being the original equation plus a source term which describes the error production. The
so obtainedmodifiedequation obviously yields important information about the numerical
scheme because (at least the lowest order term of) the error production is included.

For the kinetic scheme (7) based on a distribution functionh of type (15) with isothermal
pressure law we find

∂tρ + div(ρu) = 0,
(20)

∂t (ρuk)+ div(ρuku)+ c2
s∂xkρ =

λ1tc2
s

2
(ρ1uk + Rk),
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where

Rk = 1

λ

(
(2λ− 1)∂xk div u+ (λ− 1)

(
uk1ρ + 2 div

(
u∂xkρ

))− 1

c2
s

∂xi ∂xj (ρui u j uk)

)
. (21)

To check that (20) is the modified equation one has to show that the scheme (7) withf
replaced byh approximates the solution of (20) to second order in1t . The necessary
Taylor expansions are omitted for brevity. We just remark that all time derivatives of the
solution(ρ, u) of (20) can be expressed in terms of space derivatives by using (20) which
relates space and time derivatives. For the expansion of the kinetic scheme (7) it is im-
portant to note that derivatives with respect to1t also lead to space derivatives (since
h(x− v1t; v) is the solution of the free transport equation∂t F + v · ∇x F = 0 with initial
value F(x, v,0)= h(x, v), time derivatives and space derivatives are connected). More-
over, each time derivative produces a factorv because1t appears only in the formv1t .
The correspondingv-integrals can then be calculated due to our knowledge of the velocity
moments ofh.

To investigate the dependence on the Mach number, we scalex with a typical lengthL , t
and1t with T andu with L/T so that (20) turns into

∂tρ + div(ρu) = 0,
(22)

∂t (ρuk)+ div(ρuku)+ 1

Ma2∂xkρ =
λ1t

2Ma2 (ρ1uk + Rk),

whereMa= L/(T cs) and

Rk = 1

λ

(
(2λ− 1)∂xk div u+ (λ− 1)

(
uk1ρ+ 2 div

(
u∂xkρ

))−Ma2∂xi ∂xj (ρui u j uk)
)
. (23)

We now distinguish two limits. First, ifMa> 0 is fixed, then (22) converges to the Euler
system (2) in the limit1t→ 0. (Since (22) is just (2) with an error production of order
1t , the kinetic scheme is first order consistent to the Euler system ifMa is a fixed positive
number.) If, however, the Mach number vanishes also in such a way that the quotient
1t/Ma2 converges to some positive constant, the scheme is no longer consistent to the
inviscid equations. We investigate this second limiting case by considering the coupling

1t = 2

λRe
Ma2, (24)

whereRe> 0 is any positive value. Under the additional assumption that all terms in the
momentum equation of (22) areO(1) quantities we find∇ρ=O(Ma2). Hence, we can
assume thatρ= ρ(0)+Ma2ρ̄ whereρ(0) is a constant (sayρ(0)= 1) and ¯ρ and its derivatives
areO(1). Inserting this ansatz into Eq. (22), we find

div u = O(Ma2),

∂t uk + (u · ∇)uk + ∂xk ρ̄ =
1

Re
1uk +O(Ma2).

(25)

(The additional term (23) is of orderMa2 because divu=O(Ma2)and all derivatives ofρ are
O(Ma2) by assumption.) We conclude that in the coupled limit1t/Ma2→ 0 the modified
equation of the kinetic scheme is no longer a perturbation of the isentropic Euler system (as
for the simple limit1t→ 0). SinceO(Ma2)=O(1t), it turns out that the kinetic scheme
approximates the incompressible Navier–Stokes equation in that limit to first order in1t .
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5. NUMERICAL EXAMPLES

To calculate approximate solutions of the incompressible Navier–Stokes equation in two
dimensions we will use a kinetic scheme based on (12) withn= 3

f ∗(v) =
(

1− 2

σ 2

)
δ(v)+ 1

3σ 2

6∑
l=1

δ(v − σel ). (26)

el are unit vectors in the hexagonal directions

el =
(

cos
(
l π3
)

sin
(
l π3
) ), l = 1, . . . ,6

andσ 2> 2. f ∗ satisfies the moment conditions (8) and (9) withλ= σ 2/4. To simplify
notation, we introduce vectorsci = csσei for i = 0, . . . ,6 wheree0 is the zero vector. The
weights of theδ-measures in (26) are denoted

f ∗0 = 1− 2

σ 2
, and f ∗i =

1

3σ 2
, i = 1, . . . ,6

so that f (ρ, 0; v)= ρ f ∗(v/cs)/c2
s can be written in the form

f (ρ, 0; v) =
6∑

i=0

ρ f ∗i δ(v − ci ).

According to Section 3, a particle distribution based onf ∗ which works in the low Mach
number case can be written in the formh(ρ, u; v)=ω(u; v) f (ρ, 0; v) so that

h(ρ, u; v) =
6∑

i=0

hi (ρ, u)δ(v − ci ), hi (ρ, u) = ρ f ∗i ω(u; ci ). (27)

(Note thatω(u; v)δ(v− ci )=ω(u; ci )δ(v− ci ).) In this example, the general form (16) of
ω simplifies to

ω(u; c0) = ω̃(µ; e0) = 1− 1

σ 2− 2
|µ|2,

ω(u; ci ) = ω̃(µ; ei ) = 1− 1

2
|µ|2+ σµ · ei + 2(µ · ei )

2, i = 1, . . . ,6,

whereµ= u/cs. Since f ∗ is supported on a disk with radiusσ , the considerations in
Section 3 yield positivity ofh provided

Ma2 ≤ σ
2− 2

2
, 2≤ σ 2 ≤ 4, (28)

respectively

Ma2 ≤ 1

σ 2− 3
, σ 2 > 4.
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Pluggingh into definition (7) of the kinetic scheme, we get(
ρn+1(x)

ρn+1un+1(x)

)
=
〈

h(ρn(x − v1t), un(x − v1t); v),
(

1
v

)〉
v

=
6∑

i=0

〈
δ(v − ci ), hi (ρ

n(x − v1t), un(x − v1t))

(
1
v

)〉
v

=
6∑

i=0

(
1
ci

)
hi
(
ρn(x − ci1t), un(x − ci1t)

)
.

Setting1x= csσ1t we can writeci1t = ei1x so that information to update the density in
x is only taken from neighboring points in the hexagonal directionsei and distance1x. In
particular, no additional space discretization is required if the data points are located on a
hexagonal lattice. (Note that this property is related to the structure ofh and has been the
main motivation for the derivation in Section 3.) We also remark that the relation

1x = σcs1t

can be viewed as a CFL condition becauseσcs is the largest signal speed in the process.
To write the final scheme in concise form, we first go over from density to pressure by

multiplying ρ with c2
s. The values ofpn andµn= un/cs in the nodesxi of the hexagonal

lattice are denotedρn
i , µ

n
i and the neighboring points ofxi are abbreviated

xNil = xi −1xel , l = 0, . . . ,6.

We end up with the scheme

pn+1
i =

6∑
l=0

f ∗l pn
Nil
ω̃
(
µn

Nil
; el
)
,

µn+1
i = σ

pn+1
i

6∑
l=1

f ∗l pn
Nil
ω̃
(
µn

Nil
; el
)
el .

A closer look at the structure of the scheme reveals that it is just a finite difference approx-
imation. Each term in ˜ω corresponds to a discretized differential operator. For example,
the constant 1 in ˜ω yields an expression in the velocity equation which approximates the
pressure gradient

−∇ p(xi , tn)↔
6∑

l=1

f ∗l pn
Nil

el .

The relation is easily checked by a Taylor expansion aroundxi . Similarly, one obtains the
divergence term in the continuity equation from the linear termsσµ · e in ω̃

−div(ρu)(xi , tn)↔ 1

3

6∑
l=1

f ∗l pn
Nil
µn

Nil
· el
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and the quadratic terms in ˜ω represent discretizations of the nonlinear convective terms. It is
interesting to note at this point that the five-velocity distribution (12) withn= 2 (velocities
in coordinate directions), which has fallen out of the considerations, would have given rise to
standard central differences for gradients and the usual five-point stencils for the Laplacian.
The additional effort due to the bigger stencils (seven points in the hexagonal case, nine
points in case (13)) is not used to increase the accuracy since all approximations are still
second order accurate. It might however influence the stability of the scheme which, after
all, does not use grid staggering.

To apply the scheme to a given incompressible flow problem, the Mach number should
be as small as possible, or equivalently, the sound speedcs should be large. On the other
hand, the choice ofcs influences the resolution of the scheme due to the coupling with the
time step which is necessary to reproduce the correct kinematic viscosityν of the problem.
Condition (24) in dimensional quantities withλ= σ 2/4 gives

1t = 8ν

σ 2c2
s

. (29)

Finally, also the grid length1x is coupled tocs via the CFL condition

1x = σcs1t = 8ν

σcs
. (30)

All together, the sound speed can be viewed as a parameter which controls the precision of
the scheme. Of course, the numerical cost grows with increasingcs. If we count the time
steps necessary to reach a characteristic timeT and multiply with the number of grid points
in the computational domain of typical lengthL, we can estimate the computing time

computing time∼ T

1t

L2

1x2
∼ σ 4Re3

Ma4 (31)

(we useMa= L/T cs andRe= L2/Tν). This estimate shows that the schemes are restricted
to moderate Reynolds numbers and that the Mach number cannot be chosen too small. Of
course, it is tempting to compensate highReand smallManumbers with the parameterσ to
reduce the numerical cost. However, in view of (28), positivity of the distribution functionh
requiresσ 2 to be larger than 2(Ma2+ 1)which is of order one. Nevertheless, after choosing
cs one would pickσ close to its lower bound.

We note that a numerical cost like (31) is typical for explicit finite difference schemes
applied to convection diffusion problems. The discretization of the viscous term usually
gives rise to a stability bound of the form [23]

ν1t

1x2
= O(1)

and a CFL conditioncs1t/1x=O(1) is necessary to obtain stability also for convection.
Combining the two requirements first yieldsν/(cs1x)=O(1) respectively1x=O(ν/cs)

which is exactly of the form (30). Inserting the expression for1x in the CFL condition
then leads to1t =O(ν/c2

s) which is nothing but (29). All together, the numerical cost
calculated in (31) is not only found for the kinetic scheme but is expected for any explicit
finite difference scheme applied to compressible Navier–Stokes equations in a low Mach
number situation.
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In a concrete application, the given divergence free initial velocity fieldu0 is scaled
to obtainµ0= u0/cs. Then, according to the constant densityρ of the fluid, the average
pressure is calculated by multiplyingρ with c2

s. On fixed solid boundaries the no slip
condition gives rise toµ= 0. For pressure we use Neumann conditions.

In a first example we consider Hagen Poiseuille flow in two dimensions. Along an
infinitely long channel of widthW a pressure gradient is applied. It gives rise to a stationary
flow with a parabolic velocity profile which is stable for low Reynolds numbers. If the
channel stretches inx1 direction and the pressure drop is1p on anx1 interval of length one
then the solution has the form

u(x) =
(

u1(x2)

0

)
, u1(x2) = 1p

2ρν
(W − x2)x2,

whereρ is the density of the fluid andν the kinematic viscosity. In our examples we use
W= 1 and unit densityρ= 1. To simulate the infinitely long channel, periodicity for the
velocity is assumed at the numerical in and outflow boundaries. The solution is considered
stationary if the relative changes in the maximal velocity are less than 10−6 over a period
of 1000 time steps. Choosing a pressure drop1p= 1 andν= 0.1 the theoretical maximal
velocity in the channel is

umax= W21p

8ρν
= 1.25.

A calculation withcs= 10 (and henceMa≈ umax/cs= 0.125) reproduces the predicted
parabolic shape within plotting accuracy (see Fig. 3). For different values of the sound
speedcs the relative error in the maximal velocity is determined. If the Mach numberMa
is defined as the quotient between the maximal velocity in the channel andcs then the
error behaves likeO(Ma1.78) (taken from the doubly logarithmic plot in Fig. 4). Due to the
CFL condition,1x is proportional to the Mach number and hence the numerical order of
convergence is 1.78 in space. Since1t is proportional toMa2 the convergence in time is
approximately first order, as predicted in Section 4.

FIG. 3. Velocity profile across the channel.
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FIG. 4. RelativeL∞ error versus Mach number.

In a second test case, we consider driven cavity flow. The incompressible fluid is now
bounded by a square enclosure with side length one. A translation of the top with unit
velocity generates the fluid motion in the cavity which shows certain vortex phenomena.
The reason for choosing this test case is to show that the method also works for more
complicated flow simulations (note that the pressure has singularities in the upper corners
where the boundary condition for the velocity is discontinuous).

Usually, numerical solutions of cavity flows in two dimensions are based on a vorticity–
stream function formulation of the problem. For comparison with results from the literature
we therefore introduce the stream functionψ which is defined through

u =
 ∂ψ

∂x2

− ∂ψ

∂x1

 .
Hence,ψ is obtained by integratingu along curves and the value of the integral is indepen-
dent of the chosen curves only if the integrability condition

div u = ∂u1

∂x1
+ ∂u2

∂x2
= ∂2ψ

∂x1∂x2
− ∂2ψ

∂x2∂x1
= 0

is satisfied. Conversely, ifu is not divergence free, as in the case of the approximation
obtained from the kinetic scheme, the stream function is, strictly speaking, not well defined.
Practically, however, if divu is very small the dependency on the chosen curves is small.
A detailed analysis of this problem is presented in [14] where the cavity flow is calculated
with a lattice Boltzmann method. We will adopt the proposed form

ψ(x) =
∫ 1

0
u2(x) dx1,

where the integral from the left to the right edge of the cavity is approximated by a trapezoidal
rule based on the given data. We present two results withRe= 100 andRe= 400. In the first
case the Mach number is chosen to be 0.045 and in the second case 0.2. The corresponding
number of grids points on the lower edge are 555 respectively 501. The calculations have
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FIG. 5. Re= 100.

been performed on an nCUBE 2S with 64 processors. Due to the local structure of the
algorithm parallelization is extremely simple. Plots of the stream functions are given in
Figs. 5 and 6. Strengths and positions of the primary as well as the secondary vortices
coincide well with results obtained with other methods (taken from the list in [14]). For
comparison, we list the data in Tables I–III. The last row in eachRe-block corresponds to
the results obtained with the kinetic scheme.

Finally, we want to give a few remarks concerning the computational effort. Since the
restrictions on the time step are similar to those known for explicit finite difference schemes,
the kinetic scheme in its present form can certainly not compete with implicit methods. Also,
the kinematic viscosity restricts the grid size in a way which is not acceptable in practice.
By adding viscous terms to the distribution functionh, the latter problem can be removed.
Also, the critical pressure terms in the scheme can be treated implicitly, giving rise to a
pressure correction method. While these modifications are presently studied, the main idea
of the considerations here is to analyze the behavior of kinetic schemes in low Mach number
situations. Moreover, as we will show in the next section, the kinetic scheme in the present
form gives some insight into the lattice Boltzmann method which has not been mentioned
before.

FIG. 6. Re= 400.
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TABLE I

Primary Vortex

Re Article ψmax x1 x2

100 [31] 0.1034 0.619 0.738
[10] 0.1034 0.617 0.734
[30] 0.1033 0.617 0.741
[14] 0.1030 0.620 0.737

0.1030 0.616 0.737

400 [31] 0.1136 0.556 0.600
[10] 0.1139 0.554 0.606
[30] 0.1130 0.557 0.607
[14] 0.1121 0.560 0.608

0.1123 0.555 0.605

TABLE II

Lower Left Vortex

Re Article ψmin x1 x2

100 [31] −1.94e-6 0.038 0.031
[10] −1.75e-6 0.031 0.039
[30] −2.05e-6 0.033 0.025
[14] −1.72e-6 0.039 0.035

−1.66e-6 0.030 0.040

400 [31] −1.46e-5 0.050 0.050
[10] −1.42e-5 0.051 0.047
[30] −1.45e-5 0.050 0.043
[14] −1.30e-5 0.055 0.051

−1.33e-5 0.050 0.047

TABLE III

Lower Right Vortex

Re Article ψmin x1 x2

100 [31] −1.14e-5 0.938 0.056
[10] −1.25e-5 0.945 0.063
[30] −1.32e-5 0.942 0.050
[14] −1.22e-5 0.945 0.063

−8.30e-6 0.939 0.051

400 [31] −6.45e-4 0.888 0.119
[10] −6.42e-4 0.891 0.125
[30] −6.44e-4 0.886 0.114
[14] −6.19e-4 0.890 0.126

−6.11e-4 0.885 0.121
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6. CONNECTION TO LB METHODS

The lattice Boltzmann (LB) approach is a relatively new method to study transport phe-
nomena like fluid motion governed by Navier–Stokes equations. It relies on the observation
that a simulation of a strongly simplified, microscopic gas model can nevertheless reproduce
a meaningful, macroscopic behavior. Similar to classical discrete ordinate methods for the
Boltzmann equation [16], the microscopic velocities are restricted to a finite set. By dis-
cretizing time and space compatibly to these velocities a simple, discrete dynamical system
is obtained. In a first approach, the Liouville equation for the discrete gas has been solved
directly, giving rise to so-called lattice gas automata (LGA) [8, 9]. An advantage of these
methods is the possibility of a very effective implementation on parallel computers. How-
ever, there are some inherent problems with LGA which can be avoided by considering the
Boltzmann equation for the model gas instead of the Liouville equation [20]. In particular,
if the Boltzmann collision operator is replaced by a single relaxation time approximation
(BGK) the resulting method becomes very flexible [5, 25]. In the following, we will show
that these so-called lattice Boltzmann BGK models are closely related to the kinetic scheme
presented in Section 5.

To fix notation, letci denote the discrete velocities in the model andfi (x, t) the single-
particle distribution function for the velocityci at lattice nodex and timet . The lattice
Boltzmann BGK equation then has the form

1

1t
( fi (x + ci1t, t +1t)− fi (x, t)) = −1

τ

(
fi (x, t)− f eq

i (x, t)
)
. (32)

A fundamental restriction on the velocitiesci is their compatibility with a regular space
lattice in the sense that the lattice must be invariant under1tci -translations. The relaxation
term on the right hand side is called the BGK collision operator. The time scale on which the
collision term relaxes the distribution functionfi towards f eq

i (the equilibrium distribution)
is controlled by the parameterτ >0. Moreover, the conservation property

∑
i

(
1
ci

)(
fi − f eq

i

) = 0 (33)

is assumed, which implies that densityρ and momentumρu corresponding tofi and f eq
i

coincide. It is therefore natural to assume that the(x, t)-dependence off eq
i enters implicitly

through the parameters (
ρ

ρu

)
=
∑

i

(
1
ci

)
fi . (34)

Under certain assumptions onf eq
i a Chapman Enskog expansion of (32) together with a low

Mach number assumption shows that the average velocityu defined in (34) is an asymptotic
solution of the incompressible Navier–Stokes equation [14]. The viscosity turns out to be
directly connected to the relaxation parameterτ .

In order to relate the lattice Boltzmann approach to kinetic schemes, we recall that a
kinetic scheme can be viewed as a sequence of free flow steps where, at the beginning of
each step, the constraintf (x, v, t)= h(ρ(x, t), u(x, t); v) is enforced. Thus at timet +1t ,
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we have

f (x, v, t +1t) = h(ρ(x − v1t, t), u(x − v1t, t); v).

If h is a discrete velocity distribution (like (27)), we find that alsof is discrete

h(ρ(x − v1t, t), u(x − v1t, t); v) =
6∑

i=0

hi (ρ(x − ci1t, t), u(x − ci1t, t))δ(v − ci )

=
6∑

i=0

fi (x, t +1t)δ(v − ci )

and we can remove the fixedδ-measures in the description of the evolution

fi (x, t +1t) = hi (ρ(x − ci1t, t), u(x − ci1t, t)).

A change of variablesx− ci1t 7→ x finally yields

fi (x + ci1t, t +1t) = hi (ρ(x, t), u(x, t)).

Identifying f eq
i with the equilibrium distributionhi (ρ, u)we see that the kinetic scheme can

be regarded as LB method (32) withτ =1t . (We remark that the equilibrium distribution
based onhi (ρ, u) from Section 5 has the same form as the one described in [5] and that
the approach in Section 3 based on the nine velocity distribution (13) leads to the known
square lattice method [1, 14].) Conversely, the LB method can be considered as a linear
combination of a kinetic scheme and a free flow solver. Indeed, using the splitting

fi (x + ci1t, t +1t) =
(
1t

τ
+
[
1− 1t

τ

])
fi (x + ci1t, t +1t)

in the LB evolution (32) we find the equivalent formulation(
1− 1t

τ

)
( fi (x + ci1t, t +1t)− fi (x, t))

+ 1t

τ

(
fi (x + ci1t, t +1t)− f eq

i (x, t)
) = 0. (35)

Only in the caseτ =1t , the evolution is exactly equal to the one of the kinetic scheme.
Since

fi (x + ci1t, t +1t)− fi (x, t) = 0

yields the exact solution to the free flow problem∂t fi + ci · ∇ fi = 0, the other contribution
to (35) can be interpreted as a free flow solver. In any case, the kinetic scheme is an important
building block of the lattice Boltzmann method. Since it works directly on the variables
(ρ, u) of the problem (and is actually a finite difference scheme for(ρ, u) as described
in Section 4), this part of (35) is well understood. The free flow part, however, introduces
variables which do not have a direct counterpart in the actual Navier–Stokes problem (there
are, for example, seven occupation numbersfi in the hexagonal case versus three variables
ρ, u1, u2 in the equations).
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7. CONCLUSION

We have investigated how kinetic schemes for the isentropic Euler system behave in the
case of low Mach numbers. It turns out that they approximate solutions of the incompressible
Navier–Stokes equation where the Reynolds number is controlled by the limit of the ratio
1t/Ma2. To enhance the performance of the scheme the freedom in the choice of the
microscopic velocity distribution is used. In particular, discrete distribution functions which
are expanded at low Mach numbers lead to simple schemes which can be regarded as explicit
finite difference discretizations. Since the lattice Boltzmann method can be written as a linear
combination of a kinetic scheme and a free flow solver, the investigations also give a new
perspective on LBM.

In the present form, the numerical cost of the kinetic scheme in 2D grows withRe3 so that
applications are practically restricted to moderate Reynolds numbers. Also, compressibility
effects cannot be arbitrarily reduced because the Mach number, which should be as small
as possible, enters likeMa−4 in the numerical cost. These restrictions, however, are to be
expected for any explicit finite difference scheme applied to compressible Navier–Stokes
equations in a low Mach number case (and also for LBM due to its closeness to kinetic
schemes). Modifications of the presented scheme to remove the restrictions coming from
the purely explicit treatment as well as the correlation between grid size and Reynolds
number are possible and will be considered in future work. The often quoted advantage of
LBM to be easily parallelizable also applies to the kinetic scheme in the present form. In
fact, it holds for any explicit finite difference scheme.
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